发布网友 发布时间:2022-04-25 02:43
共1个回答
热心网友 时间:2023-10-21 22:27
四边形ABCD是直角梯形,其中∠ADC=∠BCD=90°,AD=2BC=2CD=√3
三角形PAD是等边三角形,PA=PD=AD=√3
过M作CD的平行线,交PD于点Q
连接NQ
∵N是AD的中点
∴ND=(1/2)AD=BC
∴四边形BCDN是正方形
∴BN⊥AD
BN是平面ABCD内的直线BN,AD是平面ABCD与平面PAD的交线
∴BN⊥平面PAD
∴BN⊥NQ
∵MQ∥CD
又∵四边形BCDN是正方形,BN∥CD
∴BN∥MQ
∴B、N、M、Q四点在同一平面内
∴二面角Q-BN-D即二面角M-BN-C
∵BN⊥NQ,BN⊥ND
∴∠QND是二面角Q-BN-D的平面角
∴∠QND=30°
又∵∠QDN=60°
∴三角形NQD是直角三角形,其中∠DQN=90°
∴QD=(1/2)ND=(1/4)AD=(1/4)PD
∴PQ/QD=(PD-QD)/QD=3
∵MQ∥CD
∴在三角形PCD中,PM/MC=PQ/QD=3