逆矩阵有什么性质

发布网友 发布时间:2022-04-24 13:18

我来回答

2个回答

热心网友 时间:2023-10-14 04:11

逆矩阵的性质:
1、可逆矩阵是方阵。
2、矩阵A是可逆的,其逆矩阵是唯一的。
3、A的逆矩阵的逆矩阵还是A。
4、可逆矩阵A的转置矩阵AT可逆,并且(AT)-1=(A-1)T

5、若矩阵A可逆,则矩阵A满足消去律。
6、两个可逆矩阵乘积依然是可逆的。
设A是数域上的一个n阶矩阵,若在相同数域上存在另一个n阶矩阵B,使得:AB=BA=E
,则我们称B是A的逆矩阵,而A则被称为可逆矩阵。注:E为单位矩阵。
逆矩阵的唯一性:若矩阵A是可逆的,则A的逆矩阵是唯一的。
扩展资料:
如果矩阵A和B互逆,则AB=BA=I。由条件AB=BA以及矩阵乘法的定义可知,矩阵A和B都是方阵。再由条件AB=I以及定理“两个矩阵的乘积的行列式等于这两个矩阵的行列式的乘积”可知,这两个矩阵的行列式都不为0。
也就是说,这两个矩阵的秩等于它们的级数(或称为阶,也就是说,A与B都是方阵,且rank(A)
=
rank(B)
=
n)。
证明:
1、逆矩阵是对方阵定义的,因此逆矩阵一定是方阵。
设B与C都为A的逆矩阵,则有B=C
2、假设B和C均是A的逆矩阵,B=BI=B(AC)=(BA)C=IC=C,因此某矩阵的任意两个逆矩阵相等。
3、由逆矩阵的唯一性,A-1的逆矩阵可写作(A-1)-1和A,因此相等。
4、矩阵A可逆,有AA-1=I
。(A-1)
TAT=(AA-1)T=IT=I
,AT(A-1)T=(A-1A)T=IT=I
5、由可逆矩阵的定义可知,AT可逆,其逆矩阵为(A-1)T。而(AT)-1也是AT的逆矩阵,由逆矩阵的唯一性,因此(AT)-1=(A-1)T。
参考资料来源:百度百科——逆矩阵

热心网友 时间:2023-10-14 04:12

性质1:a的逆矩阵的逆等于a;
2:λa的逆=(1/λ)*a的逆;
3:(ab)的逆=b的逆*a的逆;
4:a的转置的逆=a的逆的转置
5:若a可逆,det(a的逆)=(deta)的逆
没你说的(a的你+b的逆+c的逆)=(a+b+c)的逆
这个是不对的

声明声明:本网页内容为用户发布,旨在传播知识,不代表本网认同其观点,若有侵权等问题请及时与本网联系,我们将在第一时间删除处理。E-MAIL:11247931@qq.com