发布网友
共1个回答
热心网友
线性回归分析中选择不同列数据进行分析是为了验证实验结果的准确性和提高精确度。
线性回归中可能遇到的问题:
1、求解损失函数的最小值有两种方法:梯度下降法以及正规方程。
2、特征缩放:即对特征数据进行归一化操作,进行特征缩放的好处有两点,一是能够提升模型的收敛速度,因为如果特征间的数据相差级别较大的话,以两个特征为例,以这两个特征为横纵坐标绘制等高线图,绘制出来是扁平状的椭圆,这时候通过梯度下降法寻找梯度方向最终将走垂直于等高线的之字形路线,迭代速度变慢。
但是如果对特征进行归一化操作之后,整个等高线图将呈现圆形,梯度的方向是指向圆心的,迭代速度远远大于前者。
二是能够提升模型精度。
3、学习率α的选取:如果学习率α选取过小,会导致迭代次数变多,收敛速度变慢;学习率α选取过大,有可能会跳过最优解,最终导致根本无法收敛。